
Dremio Data Reflections
Overview and Best Practices
June 2020

http://www.dremio.com

2 dremio.com

I N T R O D U C T I O N .. 4

D ATA R E F L E C T I O N S O V E R V I E W .. 5

What Are Data Reflections.. 5

Query Rewriting... 9

Expression Matching.. 9

Date Folding.. 10

Selection Compatibility Check.. 10

Join Compatibility Check... 11

Grouping Compatibility Check.. 11

Aggregation Computability Check... 12

Applying Filters to Dimension Columns.. 12

R AW R E F L E C T I O N S .. 1 2

A G G R E G AT I O N R E F L E C T I O N S . 1 4

How Dremio Manages Date-Related Dimensions in Aggregation

Reflections... 16

S TA R F L A K E R E F L E C T I O N S .. 1 8

D ATA R E F L E C T I O N S TO R E . 1 9

How Much Space Do Data Reflections Consume... 19

H O W TO K N O W I F A Q U E R Y WA S A C C E L E R AT E D 2 0

D ATA R E F L E C T I O N M A I N T E N A N C E .. 2 1

O P T I M I Z I N G D ATA R E F L E C T I O N R E F R E S H E S .. 2 3

E X T E R N A L R E F L E C T I O N S .. 2 3

B E S T P R A C T I C E S .. 2 3

Think in Terms of Several Discrete Data Reflections.. 23

How to Design Data Reflections... 24

How to Accelerate a Query Pattern.. 24

http://www.dremio.com

3 dremio.com

Joins... 24

Filters.. 26

Aggregations.. 26

Calculated Fields... 27

When to Use Raw Reflections.. 27

When to Use Aggregation Reflections... 28

When to Use External Data Reflections.. 28

Naming Data Reflections... 29

Which Fields to Use for the Partition Option.. 30

Which Fields to Use for the Sort Option.. 30

Which Fields to Use for the Distribution Option.. 31

Managing Data Reflections With Supporting Anchor Datasets....................... 31

Data Reflection Maintenance During Design.. 33

Testing Data Reflection Matching Using EXPLAIN PLAN................................... 34

W H AT TO AV O I D .. 3 5

A C C E S S I N G D ATA R E F L E C T I O N S W I T H O U T Q U E R Y I N G
D R E M I O .. 3 5

O P T I M I Z I N G D ATA R E F L E C T I O N P E R S I S T E N C E .. 3 5

C O N F I G U R I N G M E TA D ATA R E F R E S H A N D D ATA R E F L E C T I O N
R E F R E S H O P T I M A L LY .. 3 6

U P D AT I N G D ATA R E F L E C T I O N S W H E N D ATA S E T S C H E M A S
C H A N G E . 3 7

M A N A G I N G D ATA R E F L E C T I O N S W I T H S Q L A N D T H E
R E S T A P I .. 3 7

Refreshing a reflection using a SQL statement... 37

Refreshing a reflection using API... 37

Refreshing a reflection using the Dremio Python Client..................................... 37

http://www.dremio.com

4 dremio.com

Introduction

One of the limitations of traditional scale-out query engines is that they typically

scan the entire dataset in order to answer a query. While Dremio’s Apache

Arrow-based execution engine and data source pushdowns provide exceptional

performance, business analysts and data scientists often need to accelerate

queries by orders of magnitude in order to achieve interactive performance

on very large datasets. Data reflections is a patented feature in Dremio that

delivers such query acceleration.

Data reflections are essentially data structures that are created precomputed

and then utilized during query execution. These data structures maintain data in

formats that are both logically and physically optimized. For example, the system

may maintain a materialization of data (perhaps from multiple data sources)

that is partially aggregated on specific dimensions, and then compressed and

partitioned in a specific way.

If you are familiar with the concept of using Oracle’s materialized views in

conjunction with the optional query rewrite mode, Dremio’s data reflections

will seem somewhat familiar at a logical level. However, because Dremio is a

data lake engine with the ability to elastically scale out engines, there are many

unique concepts and best practices that are covered in this document.

When considering the cost of executing a query, there are several areas that can

be very expensive to perform on large datasets:

Scans. Depending on the source, the underlying system may be suboptimal

for scan-intensive workloads. In addition, the format of the data may be

inefficient for scans (e.g., JSON), and the source may be accessible only

through a slow network connector.

Filters. Predicates that filter the data to a subset may be expensive to

perform. In addition, the resulting subset may be significantly smaller than

the total dataset, meaning that more data was scanned than necessary.

Joins. Joining data between datasets can be both CPU and memory

intensive, especially when the datasets involved are larger than memory, or

the datasets reside in different locations.

Aggregations. Depending on the cardinality of the datasets, aggregations

on one or more columns can be expensive to compute, especially when the

datasets involved are larger than memory.

Projections. Transformations applied to data within the query can be

expensive to compute, especially for elaborate CASE statements and functions.

Sorts. Sorting large, unsorted datasets can be memory intensive, especially

when the datasets involved are larger than memory.

http://www.dremio.com

5 dremio.com

Data reflections improve query performance by precalculating many of these

expensive operations, and stores the results in Dremio’s highly optimized

reflection store. Dremio’s query optimizer automatically recognizes when an

existing data reflection can and should be used to satisfy a request. It then

automatically rewrites the query plan to use the data reflection in a way that is

invisible to the end user.

Internally, queries go directly to the data reflection and not to the underlying

physical dataset. In general, rewriting queries to use data reflections rather

than physical datasets improves response time, sometimes by many orders of

magnitude.

This paper explains the underlying concepts of data reflections, how they are

created and managed in Dremio, and best practices for designing, optimizing

their use and increasing the productivity or your data analysis tasks.

Please note, this document is a complement to the product documentation on

data reflections.

Data Reflections Overview

W H AT A R E D ATA R E F L E C T I O N S

Dremio maintains physically optimized representations of source data known

as data reflections. The query optimizer can accelerate a query by utilizing one

or more data reflections to partially or entirely satisfy that query, rather than

processing the raw data in the underlying data source.

A data reflection is associated with a single physical or virtual dataset for

ease of configuration and management called the anchor dataset. Because

virtual datasets can represent a combination of multiple datasets (via joins or

subqueries), data reflections may include data from multiple data sources.

Dremio’s query planner is capable of using a single data reflection to accelerate

queries on different datasets that share one or more common ancestors. This

flexibility increases the likelihood that queries will be accelerated, and allows

administrators to maintain a relatively small number of data reflections that

accelerate a diverse set of workloads.

At a high level, each data reflection is defined by the SQL expression that

represents the expanded tree of all ancestor virtual datasets up to the

underlying physical dataset.

http://www.dremio.com
https://docs.dremio.com/acceleration/reflections.html

6 dremio.com

Physical Datasets Virtual Datasets Data Reflection

customer

order order_detail

JOIN customer, order, itemitem

customer_summary_US
Raw Reflection on
customer_summary_US

FILTER country=’US’
AGGREGATE cust_name
ORDER BY SUM(item_price)

JOIN customer, order, item
FILTER country=’US’
AGGREGATE cust_name
ORDER BY SUM(item_price)

Consider the following example:

The physical datasets (purple) are customer, order and item. These datasets

could reside in a relational database, as collections of files on a file system (e.g.,

Amazon S3, Microsoft ADLS, and Hadoop HDFS), JSON records in a NoSQL

database, Microsoft Excel spreadsheets, or any other supported data source in

Dremio.

In this graphic, virtual datasets are represented in green. Like views in relational

databases, virtual datasets represent logical expressions that ultimately refer to

one or more physical datasets.

The process of evaluating a virtual dataset and its ancestor datasets is called

dataset expansion. A virtual dataset that is based on a physical dataset is

evaluated to include the data of the underlying physical datasets as well as any

operators (e.g., projections, filters, aggregations, and joins) expressed in the

virtual dataset. For virtual datasets based on one or more other virtual datasets,

the expressions are expanded up the chain of dependency to the physical

datasets at query time.

A virtual dataset called order_detail joins these three datasets together with the

following SQL expression:

SELECT *

FROM ((order

INNER JOIN customer ON order.cust_id = customer.cust_id

INNER JOIN item on order.item_id = item.item_id))

http://www.dremio.com

7 dremio.com

Any time a user queries the virtual dataset order_detail, the query will be

expanded to use the underlying physical datasets. The user could issue the query:

SELECT * FROM order_detail

WHERE price < 100

And this would be expanded to:

SELECT *

FROM ((order

INNER JOIN customer ON order.cust_id = customer.cust_id

INNER JOIN item on order.item_id = item.item_id))

WHERE item.price < 100

There is a second virtual dataset called customer_summary_US that is

descendent from the order_detail virtual dataset. It is expressed with the

following query:

SELECT cust_name, city, COUNT(item_id), SUM(item_price)

FROM order_detail

WHERE cust_country = ‘US’

GROUP BY cust_name

ORDER BY SUM(item_price) DESC

This virtual dataset is a summary of all orders, grouped by customer and city, and

ordered by the total amount they have spent across all orders. Issuing a SELECT

* FROM customer_summary_US would expand into the following query:

SELECT cust_name, city, COUNT(item_id), SUM(item_price)

FROM ((order

INNER JOIN customer ON order.cust_id = customer.cust_id

INNER JOIN item on order.item_id = item.item_id))

WHERE cust_country = ‘US’

GROUP BY cust_name, city

http://www.dremio.com

8 dremio.com

Similarly, getting the results for all customers in a particular city:

SELECT *

FROM customer_summary_US

WHERE city = ‘Phoenix’

Would expand to:

SELECT cust_name, city, COUNT(item_id), SUM(item_price)

FROM ((order

INNER JOIN customer ON order.cust_id = customer.cust_id

INNER JOIN item on order.item_id = item.item_id))

WHERE cust_country = ‘US’ AND city=’Phoenix’

GROUP BY cust_name, city

When a data reflection is created on the virtual dataset order_summary_US, it is

defined by the fully expanded SQL expression:

SELECT cust_name, city, COUNT(item_id), SUM(item_price)

FROM ((order INNER JOIN customer ON order.cust_id =

customer.cust_id INNER JOIN item on order.item_id = item.

item_id)) WHERE cust_country = ‘US’ GROUP BY cust_name,

city

This data reflection then is the SQL expression (i.e., SELECT statement) that

defines the fully expanded dataset, as well as the results of this expression

materialized in the reflection store. Once the data reflection has been created,

subsequent queries on the virtual dataset order_summary_US will cost out

options for a pushdown on the underlying physical dataset as well as the data

reflection, and will select the lowest cost in all cases.

In many cases the query plan based on the data reflection will produce the

lowest cost, and the user’s query will be rewritten to use the data in the data

reflection rather than executing the fully expanded query on the physical

datasets. By using the logically equivalent data reflection, the work to join, filter,

aggregate and transform the data can be skipped. Instead, a simple scan of the

data reflection is performed, producing the same results much more efficiently.

http://www.dremio.com

9 dremio.com

User query Pick lowest
cost plan

Execute plan

Generate
query plan

Find candidate
Data Reflections

Evaluate for
coverage

Generate
query plan

Just as queries are fully expanded to be executed on the physical datasets,

data reflections are defined by their fully expanded form. This allows the query

planner’s matching process to match on reflections to the dataset that is being

queried as well as any data reflections associated with ancestor or sibling

datasets, allowing for more frequent acceleration of queries. If a data reflection

existed on the order_detail virtual dataset, it would be matched by the query

planner, and so would data reflections on the physical datasets themselves.

Q U E R Y R E W R I T I N G

When Dremio receives a user query, it first determines whether any data

reflections have at least one physical dataset in common with the query after

both have undergone dataset expansion. All data reflections that pass this

step are then evaluated to determine if they cover the query. The following

sections explore some of the logic used to determine if the data reflection

covers the query.

For data reflections that cover the query, Dremio will determine the cost of using

the data reflection to execute the query. These costs are then compared to the

cost of executing the query against the physical datasets, and the lowest cost

query plan is selected for physical plan generation. Typically, using one or more

data reflections will be less expensive than executing the query against the raw

physical data.

E X P R E S S I O N M ATC H I N G

An expression that appears in a query can be replaced with a simple column in a

data reflection provided the data reflection column represents a precomputed

expression that matches with the expression in the query. If a query can

be rewritten to use a data reflection, it will be faster. This is because data

reflections contain precomputed calculations and do not need to perform

expression computation.

http://www.dremio.com

10 dremio.com

Expression matching is done by first converting the expressions into canonical

forms and then comparing them for equality. Therefore, two different expressions

will be matched as long as they are equivalent to each other. Further, if the entire

expression in a query fails to match with an expression in a data reflection, then

subexpressions of it are tried in order to find a match. The subexpressions are

tried in a top-down order to get maximal expression matching.

D AT E F O L D I N G

Date folding is a specific form of expression matching rewrite. In this type

of rewrite, a date range in a query is folded into an equivalent date range

representing higher date granules. The resulting expressions representing

higher date granules in the folded date range are matched with equivalent

expressions in a data reflection. The folding of a date range into higher date

granules such as months, quarters or years is done when the underlying

datatype of the column is a date or timestamp. The expression matching is done

based on the use of canonical forms for the expressions.

Date and timestamp are built-in datatypes which represent ordered time

units such as seconds, days and months, and incorporate a time hierarchy

(second -> minute -> hour -> day -> month -> quarter -> year). This hard-coded

knowledge about date and timestamp is used in folding date ranges from

lower-date granules to higher date granules. Specifically, folding a date value to

the beginning of a month, quarter, year or to the end of a month, quarter, year

is supported. For example, the date value 1-jan-1999 can be folded into the

beginning of either year 1999 or quarter 1999-1 or month 1999-01. And, the

date value 30-sep-1999 can be folded into the end of either quarter 1999-03 or

month 1999-09.

S E L E C T I O N C O M PAT I B I L I T Y C H E C K

Dremio supports rewriting queries so that they will use data reflections in

which the HAVING or WHERE clause of the data reflection contains a selection

of a subset of the data in one or more datasets. A data reflection’s WHERE or

HAVING clause can contain a join, a selection, or both, and still be used by a

rewritten query. Predicate clauses containing expressions, or selecting rows

based on the values of particular columns, are examples of non-join predicates.

To perform this type of query rewrite, Dremio must determine if the data

requested in the query is contained in, or is a subset of, the data stored in the

data reflection. Selection compatibility is performed when both the query and

the data reflection contain selections (non-joins). A selection compatibility

check is done on the WHERE as well as the HAVING clause.

http://www.dremio.com

11 dremio.com

If the data reflection contains selections and the query does not, then the

selection compatibility check fails because the data reflection is more

restrictive than the query. This will register as “Did Not Cover Query” in the

query profile on the Acceleration tab. If the query has selections and the

data reflection does not, then selection compatibility check is not needed.

Regardless, selections and any columns mentioned in them must pass the data

sufficiency check.

J O I N C O M PAT I B I L I T Y C H E C K

In this check, the joins in a query are compared against the joins in a data

reflection. In general, this comparison results in the classification of joins into

three categories:

Common joins that occur in both the query and the data reflection. These

joins form the common subgraph. The common join pairs between the two

must be of the same type.

A query delta join is a join that appears in the query but not in the data

reflection. Any number and type of delta joins in a query are allowed and

they are simply retained when the query is rewritten with a data reflection.

Upon rewrite, the data reflection is joined to the appropriate datasets in the

query delta.

A record-preserving join is a join that appears in the data reflection but not

the query. All joins in a data reflection are required to be record preserving

with respect to the result of common joins. A record-preserving join is one

where, if two datasets called A and B are joined together, rows in dataset A

will always match with rows in dataset B and no data will be lost, hence the

term record preserving.

For more on record-preserving joins, see the section on starflake reflections.

G R O U P I N G C O M PAT I B I L I T Y C H E C K

This check is required only if both the data reflection and the query contain a

GROUP BY clause. Dremio first determines if the grouping of data requested by

a query is exactly the same as the grouping of data stored in a data reflection.

In other words, the level of grouping is the same in both the query and the data

reflection.

If the grouping of data requested by a query is at a coarser level compared to the

grouping of data stored in a data reflection, the optimizer can still use the data

reflection to rewrite the query. If the data requested in the query is more fine-

grained than that of the data reflection, then the data reflection will not cover

the query.

http://www.dremio.com

12 dremio.com

A G G R E G AT I O N C O M P U TA B I L I T Y C H E C K

This check is required only if both the query and the data reflection contain

aggregates. Dremio determines if the aggregates requested by a query can

be derived or computed from one or more aggregates stored in one or more

data reflections. For example, if a query requests AVG(X) and a data reflection

contains SUM(X) and COUNT(X), then AVG(X) can be computed as SUM(X)/

COUNT(X).

If the grouping compatibility check determines that the rollup of aggregates

stored in a data reflection is required, then the aggregate computability check

determines if it is possible to roll up each aggregate requested by the query using

aggregates in the data reflection.

For example, SUM(sales) at the city level can be rolled up to SUM(sales) at the

state level by summing all SUM(sales) aggregates in a group with the same

state value. However, AVG(sales) cannot be rolled up to a coarser level unless

COUNT(sales) is also available in the data reflection.

The argument of an aggregate such as SUM can be an arithmetic expression

like A+B. Dremio will try to match an aggregate SUM(A+B) in a query with

an aggregate SUM(A+B) or SUM(A) + SUM(B) stored in a data reflection. In

other words, expression equivalence is used when matching the argument

of an aggregate in a query with the argument of a similar aggregate in a data

reflection.

A P P LY I N G F I LT E R S TO D I M E N S I O N C O L U M N S

For aggregation reflections, Dremio can use any column configured as a

dimension for the purposes of applying a filter. For example, if the dataset

includes columns A, B and C as dimensions and the query is an aggregation query

that includes a filter on A, B or C, Dremio can accelerate the query including the

filter expression.

Raw Reflections

Dremio supports two fundamental types of data reflections: raw reflections and

aggregation reflections. Many of the options for configuring and managing both

types of data reflections are the same, but they each optimize different types of

query patterns.

Raw reflections preserve row-level fidelity of the anchor dataset. A raw

reflection includes one or more fields from the anchor dataset, and is sorted and

partitioned by specific fields. You can use raw reflections to perform a number

of optimizations:

http://www.dremio.com

13 dremio.com

USE CASE HOW RAW REFLECTIONS HELP

"Needle in a haystack" -style

queries that return relatively

small numbers of records.

Raw reflections preserve row-level data in a form

that is optimized for scans. Sorting and partitioning

the data on specific columns allows Dremio’s query

planner to make use of how the data is physically

organized to improve query performance.

Accelerate data from sources

that are not optimized for

scan-intensive workloads such

as OLTP-optimized databases,

document databases and row-

oriented data formats.

Dremio maintains the data in a highly compressed,

columnar form based on Apache Parquet. Dremio

stores this data near Dremio’s query engine which

can be scaled out with additional nodes to support

larger data volumes, greater concurrency and

lower latency. If the physical data is JSON or row-

oriented (e.g., CSV) then a raw reflection effectively

columnarizes the data.

Offload analytical workloads

from operational sources.

Dremio will automatically rewrite incoming queries

to use data reflections instead of pushing the

query into the physical source, thereby offloading

analytical queries from source systems.

Vertically partition datasets

with many columns.

For datasets with hundreds of columns, it is usually

not the case that every query requests every

column. Data reflections can be created on subsets

of columns (e.g., groups of 20 columns), and Dremio’s

query planner will automatically use the minimum

number of data reflections, thereby scanning far less

data to make processing more efficient.

Horizontally partition large

datasets.

When a column is selected for partitioning of the

data reflection, Dremio will maintain physical

partitions of the data within the reflection store.

Dremio’s query planner will perform partition

pruning when appropriate to optimize query

execution.

http://www.dremio.com

14 dremio.com

Dremio makes it easy to design raw reflections. For a given physical or virtual

dataset, enter the data reflection configuration screen to select the appropriate

options and to view the size and status at any time. You can create multiple data

reflections on the same anchor dataset, each optimized for different workloads.

Aggregation Reflections

Aggregation reflections maintain summary data about the anchor dataset. An

aggregation reflection includes one or more dimension and measure fields from the

anchor dataset, that are sorted, partitioned and distributed by specified columns.

Some of these columns are configured as dimensions that will be used in GROUP

BY (or DISTINCT) statements, and other columns are configured as measures that

will be used in calculations such as MAX, MIN, AVG, SUM and COUNT.

Dremio automatically maintains all measures for every permutation of combined

dimensions in an aggregation reflection. With each additional dimension,

additional measures are calculated and stored in the aggregation reflection. To

understand the size impact of a new dimension, consider the number of unique

values and multiply this times the number of unique values in other dimensions.

Consider the following simple example:

COLUMN NUMBER OF UNIQUE VALUES

State 50

Color 25

Size 10

Total rows in aggregation reflection 12,500

http://www.dremio.com

15 dremio.com

In this example, if the dataset comprises 100 million records, this aggregation

reflection will be very small compared to the size of the raw data. It will include

at most 12,500 rows of data, with all the measures calculated for each row (i.e.,

all intersections of possible dimensions). However, if the aggregation reflection

includes columns that have a high degree of cardinality, then the size could be

much larger:

Note that if the columns are correlated, there will be fewer records than the

multiple of the cardinalities. For example, if we assume that ZIP codes never span

more than one city (which, in reality, is not entirely true), then adding City to the

example above would slightly increase the number of records in the aggregation

reflection but not as much as if the two fields were not correlated.

The core set of measures can be used to derive other measures at query time.

For example, Dremio maintains COUNT and SUM which allows AVG to be

calculated dynamically without storing this value. The full list of measures

Dremio maintains are COUNT, MAX, MIN, SUM and approximate distinct count.

Administrators can select one or all of these options to be maintained for a data

reflection; only COUNT and SUM are enabled by default.

USE CASE HOW AGGREGATION REFLECTIONS HELP

OLAP workloads

from BI tools

Most BI tools issue queries with one or more aggregations and

one or more GROUP BY expressions. Aggregation reflections

precompute measures for all permutations of dimension

combinations, greatly improving the efficiency of these types of

queries.

Distinct values

Dremio can optimize distinct value expressions using

aggregation reflections, provided the column is specified as a

dimension in the data reflection.

Fast count distinct

Dremio can optionally store an approximate distinct count

measure on a column. This count is determined using the

HyperLogLog algorithm.

COLUMN NUMBER OF UNIQUE VALUES

State 42,000

Color 25

Size 10

Total rows in aggregation reflection 10,500,000

http://www.dremio.com

16 dremio.com

H O W D R E M I O M A N A G E S D AT E - R E L AT E D D I M E N S I O N S I N
A G G R E G AT I O N R E F L E C T I O N S

There are two date-related data types in Dremio: date and timestamp. When

timestamp columns are configured as dimensions in an aggregation reflection,

Dremio will automatically extract the day-level date value and use this as

the grouping value in the data reflection. Dremio can then automatically and

efficiently roll up these day-level values to different levels of granularity in the

time hierarchy such as month, year, quarter and week number at query time. This

applies to date data types as well.

For example, consider a dataset that includes a timestamp column for sales

records:

id sale_date items

1 2014-12-11 11:51:00.000 1

2 2014-12-12 11:59:00.000 3

3 2014-12-12 11:00:00.000 2

4 2014-12-13 10:35:00.000 6

5 2014-12-13 10:48:00.000 1

http://www.dremio.com

17 dremio.com

With an aggregation reflection on this dataset that includes the sale_date and

item_count columns with all measure types enabled, the data reflection would

include the following values:

Note that COUNT and SUM measure types are enabled by default, and here

“acd” corresponds to the approximate count distinct measure. This table is for

illustrative purposes only, the actual data in a data reflection would be organized

differently and would include other pieces of metadata.

Day-level granularity is enabled by default. If you want to preserve the original

granularity of the date in the data reflection, this option can be selected on the

dimension column: “O” represents original and “D” represents day:

Typically, day-level granularity is the appropriate setting as this yields a

reasonable cardinality for most datasets. However, there are use cases

where preserving the original value is the appropriate setting, such as events

distributed throughout the day where time of day patterns are being analyzed.

Keep in mind that you can always adjust the precision of the time value (e.g., roll

up to the nearest minute) to arrive at the ideal cardinality.

sale_date items_count items_sum items_max items_min items_acd

2014-12-11 1 1 1 1 1

2014-12-12 2 5 3 2 2

2014-12-13 2 7 6 1 2

http://www.dremio.com

18 dremio.com

Starflake Reflections

A starflake reflection is a reflection that joins multiple physical datasets in which

some or all of the joins are record-preserving joins. Any time Dremio executes

a join, it records whether that join was a record-preserving join. An outer join

is a record-preserving join if the number of records in the resulting dataset is

equal to the number of records in one of the original datasets. An inner join, on

the other hand, is a record-preserving join if every record in one of the original

datasets was matched in the join, and the number of records in the resulting

dataset is equal to the number of records in that same original dataset. Note that

a join can be record preserving in one direction or both (or not at all).

If a reflection creation job consists of one or more record-preserving joins, the

system considers the reflection to be a starflake reflection. There is no need for a

user to explicitly designate fact and dimension datasets, or indicate that a join is

record preserving.

Starflake reflections are used by Dremio to accelerate queries that include the

dataset in the starflake reflection whose records were “preserved” by the joins

(e.g., the fact dataset in a star/snowflake/starflake schema). Dremio’s optimizer

can determine if the starflake reflection can be substituted in such a query plan,

and can use this reflection to accelerate the query. This is a unique and powerful

capability as there are potentially very large numbers of variations of queries

that can be accelerated from a single starflake reflection.

For an in-depth discussion,
see Introduction to
Starflake Data Reflections.

http://www.dremio.com
https://www.dremio.com/introduction-to-starflake-data-reflections/

19 dremio.com

Data Reflection Store

Dremio maintains data reflections in a file system or object store. Users can

configure their deployments to make use of network storage or distributed

stores such as HDFS. Users can further improve performance by using low-

latency storage such as SSDs. In addition, users can take advantage of cost-

effective object stores like AWS S3 and Azure Data Lake Store (ADLS) as

their reflection store, providing separation of compute and storage, as well as

unlimited scalability.

When using object stores such as S3 and ADLS for storing data reflections,

consider that the read latency provided by these stores is significantly greater

than that of file systems, and Dremio’s query acceleration performance may be

impacted. Additionally, users don’t have to worry about using network storage

that is not attached because Dremio will use local storage in conjunction with

columnar cloud cache (C3).

Data reflections are maintained in a high-performance columnar representation

based on Apache Parquet and Apache Arrow, utilizing advanced compression

techniques such as dictionary encoding, run-length encoding and delta encoding.

One or more executor nodes in a Dremio cluster will read from the reflection

store in parallel. Dremio uses a proprietary, vectorized Parquet reader to read

data from the data reflections directly into Apache Arrow memory buffers.

Dremio carefully reads subsets of the Parquet file into memory as appropriate,

rather than full files, to make optimal use of scarce memory resources.

H O W M U C H S PA C E D O D ATA R E F L E C T I O N S C O N S U M E

In most Dremio environments, data reflections are very small compared to the raw

data, typically less than 10%, and in many cases less than 1% the size of the original.

All data reflections are stored in a highly compressed columnar format, which is

often much more space-efficient than the raw data. For example, JSON data is

frequently less than 5% of the original size when stored in a data reflection due

to the efficiency of the compression schemes used in the columnar format.

Raw reflections have the same number of records as their anchor datasets, but

they are normally a small fraction of the size of the anchor dataset. In many cases

only a small subset of the dataset columns are queried by users, and therefore, it

makes sense to include only those columns in the raw reflection.

Aggregation reflections are summarizations of anchor datasets, and therefore

have fewer records. The total number of records in the aggregation reflection

can be calculated as the product of the number of unique values in each of

the dimension columns. When the number of unique values in the dimension

columns is low, the aggregation will be relatively small, and when there are many

unique values it will be larger. For an example, see the section on aggregation

reflections above.

http://www.dremio.com
https://docs.dremio.com/deployment/cloud-cache-config.html?h=cloud%20ca

20 dremio.com

While it is possible to define an aggregation reflection that has the same

number of records as its anchor dataset (by selecting a dimension with the same

cardinality as the dataset), this would defeat the purpose of the aggregation

reflection and would be equivalent to using a raw reflection on that dataset.

Dremio displays the size of each data reflection in several of the administrative

screens, and are listed as “footprint.”

How to Know if a Query Was Accelerated

Every query in Dremio is processed as a job, and the details for how the job was

executed are maintained in Dremio’s job history. If the query was accelerated,

Dremio will display a small flame on the job detail page:

In addition, administrators can see details about the data reflections that were

considered and used for executing the query on the Acceleration tab of the job:

http://www.dremio.com

21 dremio.com

In this example, a number of data reflections were considered. Four were

excluded because they did not cover the query, meaning they were missing

columns or rows needed to satisfy the query (e.g., tip amount < 1). Two were not

chosen because they would have required a query plan that was more expensive

than the plan that was used for the data reflection that was chosen.

Data Reflection Maintenance

As physical datasets change, data reflections should be periodically refreshed.

At a high level, there are two modes for managing the data reflection refresh

process:

Dremio manages the refresh following a schedule

An external process notifies Dremio when it is time to refresh

In the first mode, an administrator specifies the desired refresh policy for an

entire data source, or specifically for each dataset. These intervals are typically

some number of weeks, days, hours or even minutes. Dremio effectively learns

how long the refresh takes and will start the process in advance to maintain the

SLA specified on the data source or dataset.

http://www.dremio.com

22 dremio.com

There are separate options in the refresh policy for specifying the refresh

interval as well as the expiration of existing data reflections. All data reflections

based on a physical dataset or source will be refreshed accordingly. Refresh

policy options for a physical dataset will override the value for the data source.

Dremio will refresh data reflections at the provided refresh interval and serve

them until the provided expiration.

Data reflections can be updated in one of two modes:

Full refresh. The entire data reflection will be rebuilt.

Incremental refresh. The data reflection will be updated based on new data

since the last refresh job.

Incremental refreshes are only possible on certain data sources such as

append-only file systems. For more information on incremental refresh, see the

documentation on Refreshing Data Reflections. Note that for any downstream

reflections that join an incrementally refreshed data reflection, the downstream

data reflection will need to be fully refreshed, since the join may have removed

rows that it now needs for the new data.

The work to build and maintain a data reflection can be significant. Dremio

automatically associates these maintenance tasks with a workload queue that

limits concurrency and has a lower priority than user queries. Administrators

can adjust these settings as appropriate. For more information, see the

documentation on Managing Job Queues.

For the second mode, an external process notifies Dremio that it is time to

refresh the data reflection. This option is useful if you have a data pipeline or ETL

process that prepares data, and as a final step, can notify Dremio via the REST

API that it is time to refresh the data reflections. To use this approach, configure

the dataset or the data source to “Never Refresh” and then call the REST API

when appropriate. You can read more about using the REST API to update data

reflections in the documentation.

Administrators can use a combination of both scheduled and triggered data

reflection refresh strategies. For example, if the data is usually updated every

day, but occasionally, based on an event, the data was updated off schedule. The

script that writes the data to the destination can make a REST API call to Dremio

to trigger a refresh on demand, and the scheduled refreshes will continue

according to the refresh policy.

http://www.dremio.com
https://docs.dremio.com/acceleration/updating-reflections.html
https://docs.dremio.com/advanced-administration/job-queues.html
https://docs.dremio.com/rest-api/reflections/
https://docs.dremio.com/rest-api/reflections/

23 dremio.com

Optimizing Data Reflection Refreshes

Internally, Dremio maintains a dependency graph (DAG) that defines the order

in which data reflections are refreshed. The dependencies are calculated based

on relational algebra, and the actual refresh start time takes into account the

expected amount of time required to complete the entire refresh cycle.

Note that this graph-based approach reduces the end-to-end cycle time, as

well as the compute resources required to complete the cycle. In addition, by

leveraging one data reflection to refresh another data reflection, the system can

avoid resource-intensive reads on operational databases more than once.

External Reflections

Dremio supports the notion of external reflections. Users can create and

maintain data reflections using an external process such as Apache Hive or

Apache Spark, then register the external reflection in Dremio. Dremio will

consider these data reflections in its cost-based analysis to accelerate queries.

Any data source that Dremio supports can be used for external reflections,

including Amazon S3, Microsoft ADLS, relational databases and Hadoop.

External reflections are useful in cases where it makes sense to manage the

creation outside of the Dremio process. For example, for processing that runs for

many hours or days, or when existing processes are already in place that create

optimized representations of data for specific query patterns. The advantage

of registering these resources in Dremio is that it simplifies the experience for

data consumers, and provides additional capabilities for securing and governing

access to the data, as well as tracking data lineage.

Best Practices

The following sections represent best practices for administering and operating

a Dremio cluster based on experiences with the Dremio community and

customer deployments. We update this document periodically to incorporate

lessons learned based on the newest updates to Dremio, so be sure to read the

latest version.

T H I N K I N T E R M S O F S E V E R A L D I S C R E T E D ATA R E F L E C T I O N S

Data reflections allow administrators to be iterative in their approach to

performance optimization. Because data reflections do not require any change

in the behavior of the data consumer, administrators can add and refine data

reflections on an ongoing basis with little to no impact to ongoing workloads.

Generally speaking, administrators should think about their data reflection

strategy as employing on the order of tens of data reflections, each configured

for different query patterns, rather than a single uber-data reflection that works

for all queries.

http://www.dremio.com

24 dremio.com

H O W TO D E S I G N D ATA R E F L E C T I O N S

Administrators should perform a clustering exercise on known workloads

to determine the optimal set of data reflections for a given deployment.

Administrators should isolate known query patterns into groups that do not

interact with one another. The more discrete the query groups, the smaller the

reflections will be on disk, the more efficient data reflection maintenance will be,

and the faster queries will be executed.

Keep in mind that a single query can use multiple data reflections and a single

data reflection can serve many queries. Administrators should optimize for the

overall workloads based on requirements for cost, storage, response time and

data maturity.

H O W TO A C C E L E R AT E A Q U E R Y PAT T E R N

Dremio supports two types of data reflections: raw reflections and aggregation

reflections. If a known query pattern returns row-level information, raw

reflections are appropriate. If the query returns summarized data based on

GROUP BY expressions or aggregations (e.g., SUM, AVG, COUNT, MIN, MAX),

then an aggregation reflection is appropriate.

When determining how to accelerate workloads, administrators should consider

information provided in the query profile to understand which stages of the

query plans are most expensive to perform. For example, it may be the case

that joins are the dominant factor in a query plan, and that while aggregations

consume some of the resources, they are relatively minor compared to the joins.

In such a case, a raw reflection may be more appropriate than an aggregation

reflection, as it can be used to accelerate a broader range of queries.

Certain types of patterns can be used to group queries together. The following

sections describe some examples.

J O I N S

Joins between datasets tend to be expensive operations for known query

patterns. By using data reflections, the costs of performing a join can be

amortized across many queries. Administrators can identify a group of queries

that make use of a common join pattern. Then, administrators can generalize

the join to be beneficial for all queries in the query pattern by removing any

additional predicates from the queries to express a common join. The resulting

query can serve as the basis of the data reflection, for both raw and aggregation

reflections.

http://www.dremio.com

25 dremio.com

For example, consider the following three queries which use a common join

pattern on datasets A, B and C:

Query 1

SELECT a1, b1, c1 FROM a,b,c WHERE a.3 > ‘2001-01-01’ AND

b.3 IN

(‘red’,’blue’,green’)

Query 2

SELECT a1, a2, c1, COUNT(b.1) FROM a,b,c WHERE a.size =

‘M’ AND b.2 < 10 AND c.2 > 2

GROUP BY a1, a2, c1

Query 3

SELECT a1, b2 FROM a,b,c WHERE c.1 = 123

A Dremio administrator can create a raw reflection that accelerates all three

queries using the following configuration:

SELECT a1, a2, a3, b1, b2, b3, c1, c2 FROM a,b,c WHERE a.3

> ‘2001-01-01’ AND b.3 IN

(‘red’,’blue’,green’) AND c.1 = 123

This data reflection would accelerate these three queries without changing

any of the three original queries—Dremio would rewrite each to use the data

reflection instead of scanning the raw data. This specific configuration is valid

and may be optimal; however, it would be limited in its ability to accelerate

more generic queries. The administrator could create a more generic data

reflection that could accelerate a broader range of queries with some additional

maintenance cost by using the following expression:

SELECT a1, a2, a3, b1, b2, b3, c1, c2 FROM a,b,c WHERE a.3

> ‘2001-01-01’

http://www.dremio.com

26 dremio.com

Optionally, an even more generic form could be created that omits the date

constraint. Each version of the query trades the ability to support more queries

with additional maintenance cost, and administrators can make decisions that

are optimal based on their resources and the SLA of the deployment.

F I LT E R S

If filters are common in your query patterns, pre-filtering the data can provide a

significant benefit to query performance. However, it may be the case that these

filters do not apply to all query patterns, and so it does not make sense to build

them into your joined virtual datasets. Instead, you can build supporting anchor

datasets whose sole purpose is to act as anchor datasets for data reflections.

For more information on this concept, see the section on supporting anchor

datasets below.

For example, consider a schema with sales data that includes a lookup table

to calculate tax based on the region of the sale. The administrator can create

supporting anchor datasets that filter the data for specific regions, such as

North America, EMEA or APAC. Each of these virtual datasets would be a simple

SELECT * on the foundational virtual dataset used to model the sales data for

a company, a join to the lookup table for tax calculation, with a filter on the

specific region.

With these three supporting anchor datasets in place, administrators would then

create raw or aggregation reflections on each. Data consumers would continue

to query the foundational data model, but now their queries would automatically

be accelerated to use the appropriate data reflection for their respective regions,

showing them sales with the appropriate tax applied.

If there is a difference in filters, the data reflection should include the broadest

(i.e., most coarse) filter or potentially no filter. For example, if query 1 filters A

> 8 and query 2 filters A > 4, the data reflection should have A > 4. However, if

there’s a query 3 in the set which doesn’t filter on A, the data reflection should

not have a filter on A, since the data reflection would not cover query 3.

A G G R E G AT I O N S

Dremio can pre-aggregate data at multiple levels of granularity. Then, at query

time, Dremio can determine how to further aggregate the data as appropriate.

Administrators can create aggregation reflections that include the lowest level

granularity as well as the most coarse granularity, and Dremio will automatically

aggregate at the appropriate level at query time.

For example, consider a history of sales data with data about each customer,

including ZIP, city, state and country on each record. The administrator can

create an aggregation reflection with several measures and specify ZIP, city,

http://www.dremio.com

27 dremio.com

state and country as dimensions. Dremio will maintain aggregations for the

measures down to the ZIP level in the aggregation reflection. Dremio will also

automatically summarize to ZIP, city, state or country using the same aggregation

reflection at query time.

Administrators should always include all levels of granularity that data

consumers may wish to group by, and they should avoid any level that is not used,

as this will make the aggregation reflection unnecessarily large. See the section

on aggregation reflections for an example of how the cardinality of dimensions

affects the overall size.

In addition to creating an aggregation reflection directly on the dataset,

administrators can also use supporting anchor datasets to accomplish the same

goal. For example, the administrator could create a supporting anchor dataset

that includes the aggregations and GROUP BY statement for the dimensions,

then create a raw reflection on this data. The end result would be the same.

C A LC U L AT E D F I E L D S

For calculated fields that are frequently used by data consumers, administrators

have a few different options for accelerating these calculations:

Add the calculated field to a virtual dataset. The administrator can add a

new column that provides the calculation. Depending on the expression,

Dremio may be able to match the new column without making the data

consumers explicitly use the new column. Otherwise, they will need to

include the new column in their queries.

Use a supporting anchor dataset. The administrator can create a supporting

anchor dataset that includes the calculated field along with other fields from

the dataset, and Dremio will automatically use the associated data reflection

to accelerate the query.

For more information on how to use supporting anchor datasets, see the section

below.

W H E N TO U S E R AW R E F L E C T I O N S

Raw reflections allow administrators to address a number of performance

concerns. Here are some common examples of when to consider raw reflections:

Non-columnar datasets. If the source data is stored in a non-columnar

format (e.g., JSON, CSV), using a raw reflection can dramatically improve the

performance of queries.

Offloading operational sources. If the data source is deployed for

operational workloads, there’s a good chance the system is not optimized

for scan-intensive workloads. Using a raw reflection will allow Dremio to

execute most analytical queries without touching the data source.

http://www.dremio.com

28 dremio.com

Needle-in-a-haystack query pattern. If queries return a subset of the data

based on predicates, in non-aggregated form, then raw reflections are the

best way to optimize these queries.

Complex joins. Joins are expensive. Using a raw reflection to pre-join data

from one or more sources can significantly improve performance.

Expensive transformations. Rather than calculating expensive

transformations at query time, a raw reflection can store the results of the

transformation so they are effectively free for subsequent queries.

Wide datasets. If your datasets have many columns (e.g., more than 100),

raw reflections can be used to vertically partition the dataset into subsets

that are commonly accessed together.

W H E N TO U S E A G G R E G AT I O N R E F L E C T I O N S

Aggregation reflections manage summarized representations of the data. Most

BI tools generate aggregation and GROUP BY queries. Aggregation reflections

optimize these kinds of query patterns.

For aggregation reflections, keep in mind that:

Dimensions should have relatively low cardinality, and high cardinality

columns will yield less benefit.

Create multiple aggregation reflections with a subset of dimensions,

rather than one uber-aggregation reflection. Caution: If a query uses more

dimensions than in an aggregation reflection, it will not cover the query and

cannot be used for acceleration.

Multiple small aggregation reflections (versus one large one) are good for

isolated pockets of query patterns on the same dataset that do not overlap.

If there is a lot of overlap, fewer larger aggregation reflections will work

better.

For computed measures (e.g., revenue=qty*item_price), first create a VDS

with revenue column and create the aggregation reflection on the VDS.

W H E N TO U S E E X T E R N A L D ATA R E F L E C T I O N S

External reflections provide benefits that are similar to data reflections

managed by Dremio. In contrast, external reflections are managed by a process

external to Dremio, such as Apache Hive or Apache Spark, and work with any

data source supported by Dremio. The same kinds of cost optimization and

query rewriting will be performed, whether the data reflection is managed by

Dremio or is actually an external reflection.

Dremio’s SQL engine is optimistic in its execution and expects most queries can

be completed in a few seconds or less. To optimize performance Dremio does

http://www.dremio.com

29 dremio.com

not perform checkpointing or other techniques that are appropriate trade-offs

for long-running processes.

When Dremio is creating a data reflection, it could fail 99% of the way to

completion, then need to restart the process from the beginning, whereas with

Hive the process of creating the transformed dataset is less efficient but more

resilient in the event of failures. If the process of creating and updating data

reflections runs for many hours, it may make sense to use an external reflection.

The advantage of using Dremio with datasets that are being managed outside

of Dremio is that it simplifies the experience of data consumers who work with

one logical data model, independent of the number of physical datasets that are

being created to optimize different workloads.

Keep in mind the following:

When using external reflections, Dremio assumes the data is sufficiently

fresh, and makes no checks to determine otherwise.

Finally, external reflections will not appear in Dremio’s management

screens. However, they do appear in the system tables, for example, when

querying SELECT * FROM sys.reflections.

N A M I N G D ATA R E F L E C T I O N S

Dremio uses the names raw reflection and aggregation reflection by default

when creating a new data reflection. If there is more than one of each type of

data reflection, Dremio will append an incrementing number (e.g., raw reflection

(1)) to maintain a unique naming scheme.

Administrators can specify a name through the advanced modal:

http://www.dremio.com

30 dremio.com

The purpose of this name is to help the administrator understand which data

reflections were used or considered in query planning, so it can make sense to

use a naming scheme that helps in this context. Note that if you rename a data

reflection, Dremio will rebuild the data reflection.

W H I C H F I E L D S TO U S E F O R T H E PA R T I T I O N O P T I O N

When administrators select a field for partitioning in a data reflection, Dremio

will physically group records together into a common directory on the file

system. For example, when partitioning by COUNTRY where the values of this

column are US, UK, DE, CA, etc., Dremio will store data together into directories

called US, UK, DE, CA, etc. This optimization allows Dremio to scan a subset of

the directories based on the query in an optimization called partition pruning.

If a user queries on records that have COUNTRY IN (“US,” “UK”) then Dremio

can apply partition pruning to scan only the US and UK directories, significantly

reducing the total data that is scanned for the query.

When using a partitioning column for data reflections, administrators should

consider:

1. Is the field used in many queries?

2. Are there relatively few unique values in the field (low cardinality)?

To partition the data, Dremio must first sort all records, which will consume

resources. Accordingly, data should only be partitioned on fields that can be

used to optimize queries. In addition, the number of unique values for a field

should be relatively small (e.g., COUNTRY) to provide a relatively small number

of partitions. If all values in a field are unique, in contrast, the work to partition

will be high cost for relatively small benefit. In general, we recommend the total

number of partitions for a dataset be less than 10,000 unique values.

W H I C H F I E L D S TO U S E F O R T H E S O R T O P T I O N

The sort option is useful for optimizing filters and range queries, especially on

columns with high cardinality. Dremio can take advantage of the sorted data

to more efficiently apply filters and range predicates to queries. If sorting is

enabled, during query execution, Dremio skips over large blocks of records

based on filters on sorted columns.

Typically, it is not beneficial to sort on more than one column in a single data

reflection, as this does not improve read performance significantly and will

increase the costs of maintenance tasks.

For workloads that need to support multiple sort options, consider multiple

data reflections where each is sorted on a single column.

http://www.dremio.com

31 dremio.com

At this time Dremio does not use the sort option to optimize sort operations.

While the data is sorted locally within a node (and partition, if applicable), most

data reflections span multiple nodes and partitions, and there is no global sort

applied across all files. Ultimately, the data must still be sorted at query time.

W H I C H F I E L D S TO U S E F O R T H E D I S T R I B U T I O N O P T I O N

The distribution option allows data from multiple datasets to be co-located and

co-partitioned across nodes in a cluster in order to minimize data movement

during join operations. Currently, Dremio does not optimize queries using the

distribution option.

M A N A G I N G D ATA R E F L E C T I O N S W I T H S U P P O R T I N G
A N C H O R D ATA S E T S

Administrators will usually begin by creating data reflections on the virtual

datasets accessed by data consumers. As administrators develop a better

understanding of the query patterns that need to be accelerated, they may

want to manage their data reflections with generalized virtual datasets that

are not intended to be accessed by data consumers directly. We call these

anchor datasets.

For example, consider a schema that includes three popular tables used in many

queries:

Customer Order Lineitem

The administrator has determined that there are a few other common patterns

in user queries:

These three tables are frequently joined together

Queries always filter by commit_date < ship_date

There is a calculated column in most queries: extended_price * (1-discount)

AS revenue

The administrator can create a virtual dataset that applies these common

patterns on these three tables, and then create a raw reflection to accelerate

queries. By using a supporting anchor dataset, the administrator can accelerate

these user queries without having them change their existing queries.

http://www.dremio.com
https://docs.dremio.com/acceleration/reflections.html#anchor-datasets

32 dremio.com

To proceed, the administrator follows these guidelines:

Use SELECT * to include all columns from the three tables to accelerate the

broadest set of queries. Alternatively, if the administrator knows exactly

which subset of columns will be used, only the subset can be included to

increase efficiency.

Add any calculated columns, in this case the revenue column.

Apply the appropriate joins on the three tables.

Apply any filters that are used by all queries, in this case commit_date <

ship_date. Always use the most generic predicate possible to maximize the

number of queries that will match.

The administrator uses the following query to create a new virtual dataset:

SELECT *,

extendedprice * (1 - discount) AS revenue FROM customer AS

c, orders AS o, lineitem AS l WHERE

c.c_custkey = o.o_custkey AND

l.l_orderkey = o.o_orderkey AND

o.commit_date < o.ship_date

The administrator then creates a raw reflection on this new virtual dataset.

Options for sorting and partitioning apply in this case just as they do for any

other raw reflection. Similarly, if most queries are aggregation queries then an

aggregation reflection can be used instead.

To effectively hide supporting anchor datasets from users, the administrator

can organize them in a folder in the space used by these data consumers called

_supportingADS:

http://www.dremio.com

33 dremio.com

Then the administrator can configure this folder to be invisible and inaccessible

to the data consumers:

Even though the data consumers do not have access to the datasets stored

in _supportingADS, Dremio will be able to accelerate their queries as long as

they have access to the physical datasets that their queries ultimately expand

to include.

D ATA R E F L E C T I O N M A I N T E N A N C E D U R I N G D E S I G N

When developing a data reflection it is common to make changes to the

configuration or the underlying virtual dataset. While iteratively working

through these configurations, you may want to create the data reflection, then

edit the virtual dataset definition, then re-create the reflection, since edits to the

virtual dataset do not trigger a data reflection refresh. In this case, you’ll want to

disable the reflection via the toggle, click save, then enable the data reflection via

the same toggle.

http://www.dremio.com

34 dremio.com

T E S T I N G D ATA R E F L E C T I O N M ATC H I N G U S I N G E X P L A I N P L A N

Administrators can test which data reflections will be used for a query without

actually running the query. This can be very helpful when the physical datasets

are very large and administrators want to avoid processing large queries

unnecessarily.

To understand how Dremio will execute the query, administrators can use the

EXPLAIN PLAN option by simply prepending this statement to the query they

wish to test. For example:

EXPLAIN PLAN FOR

SELECT payment_type, SUM(tip_amount)

FROM TaxiTrips

GROUP BY payment_type

HAVING COUNT(*) > 100

Then navigate to the jobs tab to view the query profile:

http://www.dremio.com

35 dremio.com

What to Avoid

Data reflections are very useful when they are created following the best

practices listed above. Here is a list of things to keep in mind when working with

data reflections to ensure the best user experience:

Avoid the “more is better” approach, creating multiple reflections without a

proper strategy in place can be difficult to manage.

Only incorporate reflections when users are experiencing slow query

responses or reports are not meeting established SLAs.

Frequently check for reflections that are no longer being used to accelerate

queries and evaluate whether they should be kept or removed.

Accessing Data Reflections Without
Querying Dremio

Data reflections are designed to be used by Dremio’s query optimizer, and

are not designed for direct access by external applications. However, the files

generated by Dremio are standard Parquet files and assuming appropriate

permissions are available to an application, there is no reason why they could

not be accessed.

Keep in mind that Dremio makes no guarantees as to the names of these files,

and as data reflections are updated the files will be replaced. Furthermore,

Dremio may be configured to expire data reflections on a schedule that has a

different periodicity than the refreshes, and so it will be important to query

Dremio’s system tables to know exactly which Parquet files correspond to the

data reflection for a given dataset.

Rather than query the data reflection Parquet files, we recommend that

applications query Dremio directly. Alternately, users can materialize data

into a file system or object store such as HDFS, S3, ADLS, etc. using the high-

performance parallel export feature (CTAS). The format used in these exports is

very similar to that of data reflections.

Optimizing Data Reflection Persistence

Dremio makes use of multiple compression options for storing data reflections,

including dictionary encoding, run-length encoding and delta encoding. For

persisting reflections, you can choose to minimize the number of files or

minimize time needed to refresh a data reflection.

http://www.dremio.com

36 dremio.com

This option can be accessed from the advanced modal for a data reflection, then

clicking on the gear icon:

Select minimize time needed to refresh if each thread will have a good amount

of data and there aren’t many many threads and/or you need the data reflection

to be created as fast as possible. With this setting, each final stage thread will

open their own writers to write their data. This can result in many small files if

each thread has a small amount of data. Select minimize number of files if each

final stage thread may have a small amount of data, relative to the block size

of the underlying data store. With this option, the threads will pool the data

and ensure that the fewest number of files are written to the reflection store.

Optimizing for a smaller number of files generally improves read performance

as there tend to be fewer seeks performed for a given query.

Configuring Metadata Refresh and Data Reflection
Refresh Optimally

Refresh intervals should be equal to or higher (i.e., more time) than the

metadata refresh interval for those objects. This ensures that data reflection

refreshes always take into consideration the most recent data in the refresh

process.

http://www.dremio.com

37 dremio.com

Updating Data Reflections When Dataset
Schemas Change

When the definition of a dataset changes, this does not automatically update

any associated data reflections. The data reflection will be updated during

the next scheduled or triggered refresh. If new columns are added, or column

names are changed, they will not automatically be included in the next refresh.

Administrators should update their data reflections to incorporate any schema

changes to physical or virtual datasets.

Managing Data Reflections With SQL and the
REST API

Dremio provides SQL functions for managing data reflections. For more

information, see Creating Data Reflections in the documentation. Dremio also

provides REST endpoints for creating and managing data reflections. For more

information, see the Reflection API in the documentation.

The following methods are used to refresh data reflections and are typically

implemented at the end of an ETL job

R E F R E S H I N G A R E F L E C T I O N U S I N G A S Q L S TAT E M E N T

ALTER PDS <PHYSICAL-DATASET-PATH> REFRESH METADATA

For in-depth detail please see Managing Physical Datasets

R E F R E S H I N G A R E F L E C T I O N U S I N G A P I

POST /api/v3/sql

For in-depth detail please see Dremio’s API doc.

R E F R E S H I N G A R E F L E C T I O N U S I N G T H E D R E M I O
P Y T H O N C L I E N T

Users can execute either one of the following functions:

1. refresh_vds_reflection_by_path

2. refresh_reflections_of_one_dataset

For in-depth detail please see the Dremio Client documentation.

http://www.dremio.com
https://docs.dremio.com/acceleration/creating-reflections.html
https://docs.dremio.com/rest-api/reflections/
https://docs.dremio.com/sql-reference/sql-commands/datasets.html#managing-physical-datasets
https://docs.dremio.com/rest-api/sql/post-sql.html
https://dremio-client.readthedocs.io/en/latest/dremio_client.html?highlight=refresh#dremio_client.dremio_simple_client.SimpleClient.refresh_reflections_of_one_dataset

38 dremio.com

A B O U T D R E M I O C O R P O R AT I O N

Dremio’s Data Lake Engine delivers fast query speed and a self-service semantic layer operating

directly against data lake storage. Dremio eliminates the need to copy and move data to

proprietary data warehouses or create cubes, aggregation tables and BI extracts, providing

flexibility and control for Data Architects, and self-service for Data Consumers. For more

information, visit www.dremio.com.

Founded in 2015, Dremio is headquartered in Santa Clara, CA. Investors include Cisco

Investments, Lightspeed Venture Partners, Norwest Venture Partners and Redpoint Ventures.

Connect with Dremio on GitHub, LinkedIn, Twitter, and Facebook.

All third party brands, product names, logos or trademarks referenced are the property of and are used to

identify the products or services of their respective owners. © Copyright Dremio 2020. All Rights Reserved.

http://www.dremio.com
https://github.com/dremio
https://www.linkedin.com/company/dremio
https://twitter.com/dremio
https://www.facebook.com/dremio
http://www.dremio.com

